Overview


We fabricate molecular nanodevices in a planar solid-state device geometry using a variety of different techniques: self-breaking of electromigrated Au and Pt wires, electroburning of multilayer graphene to produce nanogaps, (gateable) mechanically-controllable break junctions (MCBJs) and a self-aligned fabrication technique for fabricating nano-spaced electrodes over large lengths. Experiments consist of measuring current-voltage characteristics as a function of various control parameters (temperature, gate voltage, light, magnetic field). In particular, we focus on the molecular signatures in transport such as vibrational modes, redox activity or spin properties. Four research directions can be identified:
  1. Conducting molecules (charging and quantum interference effects)
  2. Molecular magnetism (spin transistors: electric field control over spin)
  3. Nanoparticles (photoconductance and spin-crossover particles)
  4. Nanomechanics (floppy mechanical systems that exhibit highly nonlinear behavior)



Electromigration

Molecular three-terminal devices: fabrication and experiment
H.S.J. van der Zant et al., Faraday Discuss. 131 (2006) 347

In-situ imaging of electromigration-induced nanogap formation by transmission electron microscopy
H.B. Heersche et al., Appl. Phys. Lett. 91 (2007) 072107

Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes
K.O’Neill, E.A. Osorio and H.S.J. van der Zant, Appl. Phys. Lett. 90 (2007) 133109

Room temperature stability of Pt nanogaps formed by self-breaking
F. Prins et al., Appl. Phys. Lett. 94 (2009) 123108


Graphene electrodes

Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes
F. Prins et al., Nano Letters 11 (2011) 4607


Self-aligned electrodes

Room-temperature electrical addressing of a bistable spin-crossover molecular system
F. Prins, M. Monrabel-Capilla, E.A. Osorio, E. Coronado and H.S.J. van der Zant, Adv. Mat. 23 (2011) 1545


Mechanically controlled break junctions (MCBJ)

A nano-electromechanical single-atom switch
C.A. Martin, R.H.M. Smit, H.S.J. van der Zant and J.M. van Ruitenbeek, Nano Lett. 9 (2009) 2940-2945

Sandwich-type gated mechanical break junctions
C.A. Martin, J.M. van Ruitenbeek and H.S.J. van der Zant, Nanotechnology 21 (2010) 265201

A versatile low-temperature setup for the electrical characterization of single-molecule junctions
C.A. Martin, R.H.M. Smit, R. van Egmond, H.S.J. van der Zant and J.M. van Ruitenbeek
Review of Scientific Instruments 82 (2011) 053907